Copied to
clipboard

G = C2×C20.C23order 320 = 26·5

Direct product of C2 and C20.C23

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.C23, C20.31C24, D20.28C23, Dic10.27C23, (C2×Q8)⋊27D10, (C22×Q8)⋊4D5, C20.255(C2×D4), (C2×C20).211D4, Q8⋊D516C22, C4.31(C23×D5), C104(C8.C22), C52C8.13C23, (Q8×C10)⋊34C22, C5⋊Q1615C22, (C5×Q8).20C23, Q8.20(C22×D5), (C2×C20).548C23, C4○D20.57C22, C10.150(C22×D4), (C22×C4).274D10, (C22×C10).210D4, C23.93(C5⋊D4), C4.Dic533C22, (C2×D20).285C22, (C22×C20).280C22, (C2×Dic10).313C22, (Q8×C2×C10)⋊3C2, C55(C2×C8.C22), (C2×Q8⋊D5)⋊30C2, C4.25(C2×C5⋊D4), (C2×C5⋊Q16)⋊30C2, (C2×C4○D20).24C2, (C2×C10).585(C2×D4), (C2×C4).93(C5⋊D4), (C2×C4.Dic5)⋊27C2, C2.23(C22×C5⋊D4), (C2×C4).240(C22×D5), C22.113(C2×C5⋊D4), (C2×C52C8).183C22, SmallGroup(320,1480)

Series: Derived Chief Lower central Upper central

C1C20 — C2×C20.C23
C1C5C10C20D20C2×D20C2×C4○D20 — C2×C20.C23
C5C10C20 — C2×C20.C23
C1C22C22×C4C22×Q8

Generators and relations for C2×C20.C23
 G = < a,b,c,d,e | a2=b20=c2=1, d2=e2=b10, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b11, cd=dc, ece-1=b5c, ede-1=b10d >

Subgroups: 798 in 258 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×C10, C2×C8.C22, C2×C52C8, C4.Dic5, Q8⋊D5, C5⋊Q16, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, Q8×C10, Q8×C10, C2×C4.Dic5, C2×Q8⋊D5, C20.C23, C2×C5⋊Q16, C2×C4○D20, Q8×C2×C10, C2×C20.C23
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C8.C22, C22×D4, C5⋊D4, C22×D5, C2×C8.C22, C2×C5⋊D4, C23×D5, C20.C23, C22×C5⋊D4, C2×C20.C23

Smallest permutation representation of C2×C20.C23
On 160 points
Generators in S160
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 118)(22 119)(23 120)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 109)(33 110)(34 111)(35 112)(36 113)(37 114)(38 115)(39 116)(40 117)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 141)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 53)(42 52)(43 51)(44 50)(45 49)(46 48)(54 60)(55 59)(56 58)(61 64)(62 63)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(81 97)(82 96)(83 95)(84 94)(85 93)(86 92)(87 91)(88 90)(98 100)(101 110)(102 109)(103 108)(104 107)(105 106)(111 120)(112 119)(113 118)(114 117)(115 116)(121 133)(122 132)(123 131)(124 130)(125 129)(126 128)(134 140)(135 139)(136 138)(141 146)(142 145)(143 144)(147 160)(148 159)(149 158)(150 157)(151 156)(152 155)(153 154)
(1 137 11 127)(2 138 12 128)(3 139 13 129)(4 140 14 130)(5 121 15 131)(6 122 16 132)(7 123 17 133)(8 124 18 134)(9 125 19 135)(10 126 20 136)(21 156 31 146)(22 157 32 147)(23 158 33 148)(24 159 34 149)(25 160 35 150)(26 141 36 151)(27 142 37 152)(28 143 38 153)(29 144 39 154)(30 145 40 155)(41 83 51 93)(42 84 52 94)(43 85 53 95)(44 86 54 96)(45 87 55 97)(46 88 56 98)(47 89 57 99)(48 90 58 100)(49 91 59 81)(50 92 60 82)(61 114 71 104)(62 115 72 105)(63 116 73 106)(64 117 74 107)(65 118 75 108)(66 119 76 109)(67 120 77 110)(68 101 78 111)(69 102 79 112)(70 103 80 113)
(1 26 11 36)(2 37 12 27)(3 28 13 38)(4 39 14 29)(5 30 15 40)(6 21 16 31)(7 32 17 22)(8 23 18 33)(9 34 19 24)(10 25 20 35)(41 74 51 64)(42 65 52 75)(43 76 53 66)(44 67 54 77)(45 78 55 68)(46 69 56 79)(47 80 57 70)(48 71 58 61)(49 62 59 72)(50 73 60 63)(81 115 91 105)(82 106 92 116)(83 117 93 107)(84 108 94 118)(85 119 95 109)(86 110 96 120)(87 101 97 111)(88 112 98 102)(89 103 99 113)(90 114 100 104)(121 155 131 145)(122 146 132 156)(123 157 133 147)(124 148 134 158)(125 159 135 149)(126 150 136 160)(127 141 137 151)(128 152 138 142)(129 143 139 153)(130 154 140 144)

G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,118)(22,119)(23,120)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,110)(102,109)(103,108)(104,107)(105,106)(111,120)(112,119)(113,118)(114,117)(115,116)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(134,140)(135,139)(136,138)(141,146)(142,145)(143,144)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)(153,154), (1,137,11,127)(2,138,12,128)(3,139,13,129)(4,140,14,130)(5,121,15,131)(6,122,16,132)(7,123,17,133)(8,124,18,134)(9,125,19,135)(10,126,20,136)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,141,36,151)(27,142,37,152)(28,143,38,153)(29,144,39,154)(30,145,40,155)(41,83,51,93)(42,84,52,94)(43,85,53,95)(44,86,54,96)(45,87,55,97)(46,88,56,98)(47,89,57,99)(48,90,58,100)(49,91,59,81)(50,92,60,82)(61,114,71,104)(62,115,72,105)(63,116,73,106)(64,117,74,107)(65,118,75,108)(66,119,76,109)(67,120,77,110)(68,101,78,111)(69,102,79,112)(70,103,80,113), (1,26,11,36)(2,37,12,27)(3,28,13,38)(4,39,14,29)(5,30,15,40)(6,21,16,31)(7,32,17,22)(8,23,18,33)(9,34,19,24)(10,25,20,35)(41,74,51,64)(42,65,52,75)(43,76,53,66)(44,67,54,77)(45,78,55,68)(46,69,56,79)(47,80,57,70)(48,71,58,61)(49,62,59,72)(50,73,60,63)(81,115,91,105)(82,106,92,116)(83,117,93,107)(84,108,94,118)(85,119,95,109)(86,110,96,120)(87,101,97,111)(88,112,98,102)(89,103,99,113)(90,114,100,104)(121,155,131,145)(122,146,132,156)(123,157,133,147)(124,148,134,158)(125,159,135,149)(126,150,136,160)(127,141,137,151)(128,152,138,142)(129,143,139,153)(130,154,140,144)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,118)(22,119)(23,120)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,110)(102,109)(103,108)(104,107)(105,106)(111,120)(112,119)(113,118)(114,117)(115,116)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(134,140)(135,139)(136,138)(141,146)(142,145)(143,144)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)(153,154), (1,137,11,127)(2,138,12,128)(3,139,13,129)(4,140,14,130)(5,121,15,131)(6,122,16,132)(7,123,17,133)(8,124,18,134)(9,125,19,135)(10,126,20,136)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,141,36,151)(27,142,37,152)(28,143,38,153)(29,144,39,154)(30,145,40,155)(41,83,51,93)(42,84,52,94)(43,85,53,95)(44,86,54,96)(45,87,55,97)(46,88,56,98)(47,89,57,99)(48,90,58,100)(49,91,59,81)(50,92,60,82)(61,114,71,104)(62,115,72,105)(63,116,73,106)(64,117,74,107)(65,118,75,108)(66,119,76,109)(67,120,77,110)(68,101,78,111)(69,102,79,112)(70,103,80,113), (1,26,11,36)(2,37,12,27)(3,28,13,38)(4,39,14,29)(5,30,15,40)(6,21,16,31)(7,32,17,22)(8,23,18,33)(9,34,19,24)(10,25,20,35)(41,74,51,64)(42,65,52,75)(43,76,53,66)(44,67,54,77)(45,78,55,68)(46,69,56,79)(47,80,57,70)(48,71,58,61)(49,62,59,72)(50,73,60,63)(81,115,91,105)(82,106,92,116)(83,117,93,107)(84,108,94,118)(85,119,95,109)(86,110,96,120)(87,101,97,111)(88,112,98,102)(89,103,99,113)(90,114,100,104)(121,155,131,145)(122,146,132,156)(123,157,133,147)(124,148,134,158)(125,159,135,149)(126,150,136,160)(127,141,137,151)(128,152,138,142)(129,143,139,153)(130,154,140,144) );

G=PermutationGroup([[(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,118),(22,119),(23,120),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,109),(33,110),(34,111),(35,112),(36,113),(37,114),(38,115),(39,116),(40,117),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,141)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,53),(42,52),(43,51),(44,50),(45,49),(46,48),(54,60),(55,59),(56,58),(61,64),(62,63),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(81,97),(82,96),(83,95),(84,94),(85,93),(86,92),(87,91),(88,90),(98,100),(101,110),(102,109),(103,108),(104,107),(105,106),(111,120),(112,119),(113,118),(114,117),(115,116),(121,133),(122,132),(123,131),(124,130),(125,129),(126,128),(134,140),(135,139),(136,138),(141,146),(142,145),(143,144),(147,160),(148,159),(149,158),(150,157),(151,156),(152,155),(153,154)], [(1,137,11,127),(2,138,12,128),(3,139,13,129),(4,140,14,130),(5,121,15,131),(6,122,16,132),(7,123,17,133),(8,124,18,134),(9,125,19,135),(10,126,20,136),(21,156,31,146),(22,157,32,147),(23,158,33,148),(24,159,34,149),(25,160,35,150),(26,141,36,151),(27,142,37,152),(28,143,38,153),(29,144,39,154),(30,145,40,155),(41,83,51,93),(42,84,52,94),(43,85,53,95),(44,86,54,96),(45,87,55,97),(46,88,56,98),(47,89,57,99),(48,90,58,100),(49,91,59,81),(50,92,60,82),(61,114,71,104),(62,115,72,105),(63,116,73,106),(64,117,74,107),(65,118,75,108),(66,119,76,109),(67,120,77,110),(68,101,78,111),(69,102,79,112),(70,103,80,113)], [(1,26,11,36),(2,37,12,27),(3,28,13,38),(4,39,14,29),(5,30,15,40),(6,21,16,31),(7,32,17,22),(8,23,18,33),(9,34,19,24),(10,25,20,35),(41,74,51,64),(42,65,52,75),(43,76,53,66),(44,67,54,77),(45,78,55,68),(46,69,56,79),(47,80,57,70),(48,71,58,61),(49,62,59,72),(50,73,60,63),(81,115,91,105),(82,106,92,116),(83,117,93,107),(84,108,94,118),(85,119,95,109),(86,110,96,120),(87,101,97,111),(88,112,98,102),(89,103,99,113),(90,114,100,104),(121,155,131,145),(122,146,132,156),(123,157,133,147),(124,148,134,158),(125,159,135,149),(126,150,136,160),(127,141,137,151),(128,152,138,142),(129,143,139,153),(130,154,140,144)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10N20A···20X
order12222222444444444455888810···1020···20
size111122202022224444202022202020202···24···4

62 irreducible representations

dim1111111222222244
type++++++++++++-
imageC1C2C2C2C2C2C2D4D4D5D10D10C5⋊D4C5⋊D4C8.C22C20.C23
kernelC2×C20.C23C2×C4.Dic5C2×Q8⋊D5C20.C23C2×C5⋊Q16C2×C4○D20Q8×C2×C10C2×C20C22×C10C22×Q8C22×C4C2×Q8C2×C4C23C10C2
# reps112821131221212428

Matrix representation of C2×C20.C23 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
4000000
0400000
000061
0000400
00354000
001000
,
100000
0400000
0063500
00403500
0000356
000016
,
100000
010000
0000186
00003523
00233500
0061800
,
010000
100000
003136205
005203631
00205105
0036313621

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,35,1,0,0,0,0,40,0,0,0,6,40,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,0,0,0,0,35,1,0,0,0,0,6,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,23,6,0,0,0,0,35,18,0,0,18,35,0,0,0,0,6,23,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,31,5,20,36,0,0,36,20,5,31,0,0,20,36,10,36,0,0,5,31,5,21] >;

C2×C20.C23 in GAP, Magma, Sage, TeX

C_2\times C_{20}.C_2^3
% in TeX

G:=Group("C2xC20.C2^3");
// GroupNames label

G:=SmallGroup(320,1480);
// by ID

G=gap.SmallGroup(320,1480);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,136,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^20=c^2=1,d^2=e^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^11,c*d=d*c,e*c*e^-1=b^5*c,e*d*e^-1=b^10*d>;
// generators/relations

׿
×
𝔽